Warning
  • JUser: :_load: Unable to load user with ID: 532
Watermill Watermill by Don Chesnut

The old process of grinding grain in water mills

  • Written by 
  • Published in News
  • Read 19052 times

A watermill is a structure that uses a water wheel or turbine to drive a mechanical process such as flour, lumber or textile production, or metal shaping (rolling, grinding or wire drawing). There are two basic types of watermills, one powered by a vertical waterwheel through a gearing mechanism, and the other equipped with a horizontal waterwheel without such a mechanism. The former type can be further divided, depending on where the water hits the wheel paddles, into undershot, overshot, breastshot and pitchback (backshot or reverse shot) waterwheel mills. Other types of water mills include tide mills and ship mills. 

History

Hellenistic engineers invented the two main components of watermills, the waterwheel and toothed gearing, and were, along with the Romans, the first to operate undershot, overshot and breastshot waterwheel mills.

The earliest evidence of a water-driven wheel is probably the Perachora wheel (3rd century BC), in Greece. The earliest written reference is in the technical treatises Pneumatica and Parasceuastica of the Greek engineer Philo of Byzantium (c. 280−220 BC). The British historian of technology M.J.T. Lewis has shown that those portions of Philo of Byzantium's mechanical treatise which describe water wheels and which have been previously regarded as later Arabic interpolations, actually date back to the Greek 3rd-century BC original. The sakia gear is, already fully developed, for the first time attested in a 2nd-century BC Hellenistic wall painting in Ptolemaic Egypt.

Lewis assigns the date of the invention of the horizontal-wheeled mill to the Greek colony of Byzantium in the first half of 3rd century BC, and that of the vertical-wheeled mill to Ptolemaic Alexandria around 240 BC.

The Greek geographer Strabon reports in his Geography a water-powered grain-mill to have existed near the palace of king Mithradates VI Eupator at Cabira, Asia Minor, before 71 BC.

The Roman engineer Vitruvius has the first technical description of a watermill, dated to 40/10 BC; the device is fitted with an undershot wheel and power is transmitted via a gearing mechanism. He also seems to indicate the existence of water-powered kneading machines.

The Greek epigrammatist Antipater of Thessalonica tells of an advanced overshot wheel mill around 20 BC/10 AD. He praised for its use in grinding grain and the reduction of human labour:

Hold back your hand from the mill, you grinding girls; even if the cockcrow heralds the dawn, sleep on. For Demeter has imposed the labours of your hands on the nymphs, who leaping down upon the topmost part of the wheel, rotate its axle; with encircling cogs, it turns the hollow weight of the Nisyrian millstones. If we learn to feast toil-free on the fruits of the earth, we taste again the golden age.

The Roman encyclopedist Pliny mentions in his Naturalis Historia of around 70 AD water-powered trip hammers operating in the greater part of Italy. There is evidence of a fulling mill in 73/4 AD in Antioch, Roman Syria.

It is likely that a water-powered stamp mill was used at Dolaucothi to crush gold-bearing quartz, with a possible date of late 1st century to early 2nd century. The stamps were operated as a batch of four working against a large conglomerate block, now known as Carreg Pumpsaint. Similar anvil stones have been found at other Roman mines across Europe, especially in Spain and Portugal.

The 1st-century AD multiple mill complex of Barbegal in southern France has been described as "the greatest known concentration of mechanical power in the ancient world". It featured 16 overshot waterwheels to power an equal number of flour mills. The capacity of the mills has been estimated at 4.5 tons of flour per day, sufficient to supply enough bread for the 12,500 inhabitants occupying the town of Arelate at that time. A similar mill complex existed on the Janiculum hill, whose supply of flour for Rome's population was judged by emperor Aurelian important enough to be included in the Aurelian walls in the late 3rd century.

A breastshot wheel mill dating to the late 2nd century AD was excavated at Les Martres-de-Veyre, France.

Scheme of the Roman Hierapolis sawmill, the earliest known machine to incorporate a crank and connecting rod mechanism.

The 3rd-century AD Hierapolis water-powered stone sawmill is the earliest known machine to incorporate a crank and connecting rod mechanism. Further sawmills, also powered by crank and connecting rod mechanisms, are archaeologically attested for the 6th-century water-powered stone sawmills at Gerasa and Ephesus. Literary references to water-powered marble saws in what is now Germany can be found in Ausonius 4th-century poem Mosella. They also seem to be indicated about the same time by the Christian saint Gregory of Nyssa from Anatolia, demonstrating a diversified use of water-power in many parts of the Roman Empire.

Roman turbine mill at Chemtou, Tunisia. The tangential water inflow of the millrace made the horizontal wheel in the shaft turn like a true turbine, the earliest known.

The earliest turbine mill was found in Chemtou and Testour, Roman North Africa, dating to the late 3rd or early 4th century AD. A possible water-powered furnace has been identified at Marseille, France.

Mills were commonly used for grinding grain into flour (attested by Pliny the Elder), but industrial uses as fulling and sawing marble were also applied.

The Romans used both fixed and floating water wheels and introduced water power to other provinces of the Roman Empire. So-called 'Greek Mills' used water wheels with a horizontal wheel (and vertical shaft). A "Roman Mill" features a vertical wheel (on a horizontal shaft). Greek style mills are the older and simpler of the two designs, but only operate well with high water velocities and with small diameter millstones. Roman style mills are more complicated as they require gears to transmit the power from a shaft with a horizontal axis to one with a vertical axis.

Although to date only a few dozen Roman mills are archaeologically traced, the widespread use of aqueducts in the period suggests that many remain to be discovered. Recent excavations in Roman London, for example, have uncovered what appears to be a tide mill together with a possible sequence of mills worked by an aqueduct running along the side of the River Fleet.

In 537 AD, ship mills were ingeniously used by the East Roman general Belisarius, when the besieging Goths cut off the water supply for those mills. These floating mills had a wheel that was attached to a boat moored in a fast flowing river.

(info: wikipedia.org)

Media

Leave a comment

Make sure you enter all the required information, indicated by an asterisk (*). HTML code is not allowed.